Se encuentra usted aquí

Mensaje de error

Strict warning: Only variables should be passed by reference en theme_biblio_tabular() (línea 285 de /usr/home/concereal.es/web/sites/all/modules/biblio/includes/biblio_theme.inc).

Technological Assessment of Chestnut Flour Doughs Regarding to Doughs from Other Commercial Flours and Formulations

TítuloTechnological Assessment of Chestnut Flour Doughs Regarding to Doughs from Other Commercial Flours and Formulations
Publication TypeJournal Article
Year of Publication2012
AuthorsMoreira, R, Chenlo, F, Torres, MD, Prieto, DM
JournalFood and Bioprocess Technology
Volume5
Pagination2301-2310
ISSN1935-5130
Palabras claveGelatinization, Mixing, Mixolab®, Rice, Torque, Wheat, Yellow corn
Abstract

The technological assessment of chestnut flour doughs was studied using Mixolab® apparatus, establishing a comparison with gluten (soft, hard and whole wheat) and gluten-free (rice and yellow corn) flour doughs as well as corn starch pastrymaking and breadmaking formulations. This equipment measures the torque in function of temperature and time, firstly at 30 °C (mixing curve) and secondly the mixing during heating (4 °C/min up to 90 °C) and cooling (4 °C/min up to 50 °C) steps (complete curve). Different hydrations of doughs ranging from 41.4% to 68.5% (flour basis) were necessary to reach the torque of 1.10 ± 0.07 Nm. Parameters of mixing such as water absorption, development time, stability and mixing tolerance index were obtained. Parameters of heating and cooling cycle related to weakening of proteins, gelatinization starch, amylase activity and starch retrogradation as well as range of gelatinization temperatures were also determined. Chestnut flour showed suitable parameters in the mixing stage such as arrival time (1.93 ± 0.1 min), stability (12.1 ± 0.4 min) and departure time (14.0 ± 0.3 min). In the heating cycle, chestnut flour exhibited close behaviour to soft wheat flour with cooking stability of 1.12 ± 0.01 min and seems to be suitable for pastrymaking products. Finally, in the cooling cycle the behaviour revealed that products of this flour can present problems of staling and crumbs firmness due to high values (2.88 Nm) of C5 parameter.

URLhttp://dx.doi.org/10.1007/s11947-011-0524-8
DOI10.1007/s11947-011-0524-8
Short TitleEvaluación Tecnológica de las masas de harina de castaña con relación a masas de Otros Harinas y formulaciones comerciales
Full Text

Technological Assessment of Chestnut Flour Doughs Regarding to Doughs from Other Commercial Flours and Formulations

References
  1. AACC. (1999). Method 54/21. Minnesota, USA: Approved methods of the American Association of Cereal Chemisrty, AACC.
  2. Anton, A. A., Lukow, O. M., Fulcher, R. G., & Arntfield, S. D. (2009). Shelf stability and sensory properties of flour tortillas fortified with pinto bean (Phaseolus vulgaris L.) flour: Effects of hydrocolloid addition. LWT Food Science and Technology, 42, 23–29. CrossRef
  3. AOAC. (1995). Official methods of analysis. Washington, USA: Association of Official Analytical Chemistry.
  4. Bonet, A., Blaszczak, W., & Rosell, C. M. (2006). Formation of homopolymers and heteropolymers between wheat flour and several protein sources by transglutamianse catalysed crosslinking. Cereal Chemistry, 83, 655–662. CrossRef
  5. Brites, C., Trigo, M. J., Santos, C., Collar, C., & Rosell, C. M. (2010). Maize-based gluten-free bread: Influence of processing parameters on sensory and instrumental quality. Food and Bioprocess Technology, 3, 707–715. CrossRef
  6. Cato, L., & Mils, C. (2008). Evaluation of the Mixolab for assessment of flour quality. Food Australlian, 60, 577–581.
  7. Chaisawang, M., & Suphantharika, M. (2006). Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocolloids, 20, 641–649. CrossRef
  8. Chiotelli, E., Rolée, A., & Le Meste, M. (2004). Rheological properties of soft wheat flour doughs: Effect of salt and tryglicerides. Cereal Chemistry, 81, 459–468. CrossRef
  9. Codina, G. G., Bordei, D., & Paslaru, V. (2008). The effects of different doses of gluten on rheological behaviour of dough and bread quality.Romanian Biotechnology Letters, 13, 37–42.
  10. Collar, C., Bollaín, C., & Rosell, C. M. (2007). Rheological behaviour of formulated bread doughs during mixing and heating. Food Science and Technology International, 13, 99–107. CrossRef
  11. Correia, P., Leitão, A., & Beirão-da-Costa, M. L. (2009). The effect of drying temperatures on morphological and chemical properties of dried chestnuts flours. Journal of Food Engineering, 90, 325–332. CrossRef
  12. D’Appolonia, B. L., & Kunerth, W. H. (1984). The farinograph handbook. Minnesota, USA: American Association of Cereal Chemistry.
  13. Demiate, I. M., Oetterer, M., & Wosiacki, G. (2001). Characterization of chestnut (Castanea Sativa, Mill) starch for industrial utilization. Brazilian Archives of Biology and Technology, 44, 69–78. CrossRef
  14. Dobraszczyk, B. J., & Morgenstern, M. P. (2003). Rheology and breadmaking process. Journal of Cereal Science, 38, 229–245. CrossRef
  15. Eliasson, A. C., & Gudmundsson, M. (1996). Starch: Physochemical and functional aspects. In A. C. Eliasson (Ed.), Carbohydrates in food. New York, USA: Marcel Dekker.
  16. FAO. (2009). < http://www.fao.org/infoods/directory_en.stm >.
  17. Galliard, T., & Bowler, P. (1987). Morphology and composition of starch. In T. Galliard (Ed.), Starch: Properties and potencial. Chichester, UK: John Wiley and Sons.
  18. Grzybowski, R. A., & Donnelly, B. J. (1979). Cooking properties of spaghetti: Factors affecting cooking quality. Journal of Agricultural and Food Chemistry, 27, 380–384. CrossRef
  19. ICC (2008) ICC-standard methods nos. 110/1, 115/1, 173. International Association for Cereal Chemistry.
  20. Jacobs, H., Eerlingen, R. C., & Delcour, J. A. (1996). Factors affecting the viscoamylograph and rapid visco-analyzer evaluation of the impact of anneling on starch pasting properties. Starch, 48, 266–270. CrossRef
  21. Kahraman, K., Sakiyan, O., Ozturk, S., Koksel, H., Sumnu, G., & Dubat, A. (2008). Utilization of Mixolab® to predict the suitable of flours in terms of cake quality. European Food Research and Technology, 227, 565–570. CrossRef
  22. Lazaridou, A., Duta, D., Papageorgio, M., Belc, N., & Biliaderis, C. G. (2007). Effects of hydrocolloid on dough rheology and bread quality parameters in gluten free formulations. Journal of Food Engineering, 79, 1033–1047. CrossRef
  23. Létang, C., Piau, M., & Verdier, C. (1999). Characterization of wheat flour-water doughs. Part I. Rheometry and microstructure. Journal of Food Engineering, 41, 121–132. CrossRef
  24. Levine, L., & Boehmer, E. (1997). Dough processing systems. In K. J. Valentas, E. Rotstein, & R. P. Singh (Eds.), Handbook of food engineering practice. New York, USA: CRC Press.
  25. Lund, D. (1984). Influence of time, temperature, moisture, ingredients and processing conditions on starch gelatinization. Critical Review of Food Science and Nutrition, 20, 249–273. CrossRef
  26. Marco, C., & Rosell, C. M. (2008). Breadmaking performance of protein enriched, gluten-free breads. European Food Research and Technology, 227, 1205–1213. CrossRef
  27. McGee. (2004). On food and cooking: The science and lore of the kitchen. Dallas, USA: Charles Scribner’s Sons.
  28. Medcalf, D. G., & Gillis, K. A. (1965). Wheat starches I. Comparison of physicochemical properties. Cereal Chemistry, 42, 558–568.
  29. Míguez-Bernárdez, M., De la Montaña-Miguélez, J., & García-Queijeiro, J. (2004). HPLC determination of sugars in varieties of chestnut fruits from Galicia (Spain). Journal of Food Composition and Analysis, 17, 63–67. CrossRef
  30. Milde, L.B., Ramallo, L.A., & Puppo, M.C. (2010) Gluten-free bread based on tapioca starch: Texture and sensory studies. Food Bioprocess Technology, doi:10.1007/s11947-010-0381-x, in press.
  31. Mixolab®. (2008). Mixolab® user’s manual. Villeneuve la Garenne, France: Tripette & Renaud Chopin.
  32. Moreira, R., Chenlo, F., Torres, M.D., & Prieto, D.M. (2010a) Desorption isotherms and net isosteric heat of chestnut flour and starch. Food and Bioprocess Technology, doi:10.1007/s11947-009-0239-2, in press.
  33. Moreira, R., Chenlo, F., Torres, M. D., & Prieto, D. M. (2010b). Influence of the particle size on the rheological behaviour of chestnut flour doughs.Journal of Food Enginering, 100, 270–277. CrossRef
  34. Morrison, W. R., Milligan, T. P., & Azudin, M. N. (1984). A relationship between the amylose and lipids contents of starches from diploid cereals.Journal of Cereal Science, 2, 257–271. CrossRef
  35. Ozturk, S., Kahraman, K., Tiftik, B., & Koksel, H. (2008). Predicting the cookie quality of flours by using Mixolab®. European Food Research and Technology, 227, 1549–1554. CrossRef
  36. Rojas, J. A., Rosell, C. M., & Benedito, C. (1999). Pasting properties of different wheat flour-hydrocolloid systems. Food Hydrocolloids, 13, 27–33. CrossRef
  37. Rosell, C. M., & Marco, C. (2008). Rice. In E. K. Arendt & F. Dal Bello (Eds.), Gluten free cereal product and beverages. London, UK: Academic.
  38. Rosell, C. M., Collar, C., & Haros, M. (2007). Assessment of hydrocolloid effects on the thermo-mechanical properties of wheat using the Mixolab. Food Hydrocolloids, 21, 454–462.
  39. Sacchetti, G., Pinnavaia, G. G., Guidolin, E., & Dalla Rosa, M. (2004). Effects of extrusion temperature and feed composition on the functional, physical and sensory properties of chestnut and rice flour based snack like products. Food Research International, 37, 527–534. CrossRef
  40. Scott, J. M., Hugh, J. C., & Colin, J. R. (1998). A simple and rapid colorimetric method for the determination of amylose in starch products.Starch, 50, 158–163. CrossRef
  41. Wickramasinghe, H. A. M., Miura, H., Yamauchi, H., & Noda, T. (2005). Comparison of the starch properties of Japanese wheat varieties with those of popular commercial wheat classes from the USA, Canada and Australia. Food Chemistry, 93, 9–15. CrossRef
  42. Wilson, A. J., Morgensten, M. P., & Kavale, S. (2001). Mixing response of a variable speed 125 g laboratory scale mechanical dough development mixed. Journal of Cereal Science, 34, 151–158. CrossRef
  43. Wootton, M., & Bamunuarachchi, A. (1980). Application of differential scanning calorimetry to starch gelatinization. III. Effect of sucrose and sodium chloride. Starch, 32, 126–129. CrossRef
  44. Zounis, S., & Quail, K. J. (1997). Predicting test bakery requeriments from laboratory mixing tests. Journal of Cereal Science, 25, 185–196.CrossRef

© 2012 Consultores Cerealistas, S. A. | Condiciones de uso del sitio Web